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Abstract 33 

The study aimed to evaluate the effects of a 3-week vitamin D supplementation on serum 34 

25(OH)D levels and skeletal muscle biomarkers (i.e. troponin, myoglobin, creatine kinase 35 

and lactic dehydrogenase) of endurance runners. Twenty-four runners were examined at 36 

baseline and in response to eccentric exercise before and after two dietary protocols (dose 37 

of 2000 IU for three weeks or placebo). Significant differences between pre- and post-38 

intervention in 25(OH)D levels were observed (36.1±6.0 versus 40.0±5.2 ng/ml, p<0.05). 39 

A higher post intervention 25(OH)D level was observed after vitamin D diet compared to 40 

placebo (40.0±5.2 versus 31.8±4.2 ng/mL, respectively; p<0.01). The vitamin D 41 

supplementation decreased 1 h and 24 h post-exercise troponin (p<0.05, p<0.01, 42 

respectively), myoglobin concentration (p<0.05, p<0.01, respectively) and 24 h post 43 

exercise creatine kinase (CK) activity (p<0.01). A negative correlation was observed 44 

between post exercise 25(OH)D levels and myoglobin levels (r=-0.57; p<0.05), 25(OH)D 45 

levels and CK (r=-0.60; p<0.05), and 25(OH)D levels and TNFα (r=-0.58; p<0.05). These 46 

findings suggested that an increase in 25(OH)D release in response to vitamin D 47 

supplementation attenuated the muscle biomarker levels following eccentric exercise and 48 

might play a key role in prevention of skeletal muscle injury.  49 

Key words: vitamin D; muscle biomarkers; eccentric exercise; fatigue; marathon. 50 



  

Introduction 51 

 52 

Strenuous exercise has been associated with adaptive changes in skeletal muscle, such as an 53 

ability to use oxygen to generate energy for muscle work, a decrease in oxygen demand for 54 

the same level of external work performed, as well as an improvement of mechanisms 55 

towards decreased exercise-induced muscle damage 1. In a recent study, a prevalence of 56 

vitamin D deficiency in extreme endurance athletes, and an association between delayed 57 

physical performance and the deficiency in vitamin D were observed during regular 58 

training 2-4. These physiological responses in muscles were influenced by exercise-induced 59 

mechanisms and were probably affected by nutritional athletic status and limitation of sun 60 

exposure 2, 5-7.  61 

 62 

Long distance running has been shown to induce progressive increase of neuromuscular 63 

function and adaptive changes in cardiovascular, as well as immune and endocrine systems 64 

8-11. The potential mechanisms - through which function of the muscular system might be 65 

beneficially modified in response to extreme repeated exercise stress - included 66 

improvement of vitamin D status 4. Several studies supported the theory that functional 67 

responses in skeletal muscle were influenced by mechanisms that could be affected by 68 

biological effects of an active form of vitamin D and its ability to bind with the membrane 69 

and nuclear vitamin D receptors (VDRs) 11, 12. Besides the importance of vitamin D, 70 

especially 25(OH)D (serum 25-hydroxy vitamin D), in the regulation of bones and calcium 71 

homeostasis, it was also involved in skeletal muscle performance and in exercise-induced 72 

inflammatory processes, neurological functions and cardiovascular health 7, 13-15. It should 73 

be noted that muscle power and force in marathon runners were linked with vitamin D 74 

levels 16. The deficiency in vitamin D increased the risk of muscle myopathy, and impaired 75 

cross-bridge formation leading to muscle weakness and fatigue 17-19. Due to the higher 76 



 

 

levels of biomarkers of muscle injury and reduction of total antioxidant capacity and 77 

muscle function in response to extreme exercise training, strategies should be developed to 78 

maintain an optimal vitamin D level in response to its exercise-induced deficiency. It has 79 

been hypothesized that higher exposure to vitamin D - producing ultraviolet light and 80 

serum 25(OH)D levels above the normal reference range (up to 50 ng/mL) - could be 81 

associated with beneficial adaptations in skeletal muscle consisting of enhanced aerobic 82 

performance, both force and power production and decreased recovery time from training 83 

20. 84 

 85 

The physiological consequence of intense physical training in response to vitamin D 86 

supplementation induced by activation of the serum 25(OH)D status depended on the 87 

dosages exceeding the recommendations for vitamin D 21-24. In elite rowers, maximal 88 

oxygen uptake increased significantly in response to supplementation with 6000 IU/day of 89 

vitamin D during 8-weeks training, whereas, the dosage of 4000 IU/day for 35 days of 90 

vitamin D improved the recovery by the attenuation of the inflammation processes in 91 

moderately active adults 25. Positive effects of supplementation (8 weeks of 5000 IU/day of 92 

vitamin D) and increases in force and power production in professional soccer players were 93 

also observed 24. However, optimal vitamin D dosage and serum levels needed for athletic 94 

performance and recovery have been controversial 25. A dosage of 600-800 IU/day and 95 

1000 IU/day of vitamin D might not be sufficient for optimal levels of vitamin D, nor 96 

prevent a decline in serum 25(OH)D in response to intense exercise training 21. There was 97 

evidence suggesting that dietary supplementation with 2000 to 5000 IU/day of vitamin D 98 

had a positive impact on bone health and skeletal muscle function 23. However, it was not 99 

specified what dose of vitamin D was sufficient to prevent muscle damage and could be 100 

effective for accelerating muscle regeneration after intense effort with an eccentric work 101 

component 26, 27. 102 



 

 

Participation in marathon and ultra-marathon races is becoming an increasingly popular 103 

activity, which is encouraged by an increasing number of running events being organized 104 

each year. Hence, a number of investigations have been conducted to determine the risk 105 

factors of skeletal muscle injury in long-term runners 9, 28. Considering that fact, there are 106 

still, at present, no official recommendations for the treatment of muscle fatigue. 107 

Nonspecific treatments with higher vitamin D usage have been used clinically or 108 

experimentally, and have shown some positive effects.  109 

 110 

Therefore, it seemed important to investigate the association between recommended low 111 

vitamin D dosage and an early identification of increased muscle fatigue risk. In previous 112 

studies on the assessment of muscle dysfunction, the conventional biomarkers (e.g., Tn, 113 

CK, myoglobin, LDH) have been analyzed 29, 30. These markers had different release times 114 

and different times of reaching maximal concentrations 8, 10, 31. It has been hypothesized that 115 

exercise-induced lower muscle biomarker secretion may depend on increased serum 116 

25(OH)D levels and these vitamin levels might be used for early detection of greater 117 

muscle resistance to fatigue. There are limited data regarding the effect of lower dosages of 118 

vitamin D supplementation on muscle function and optimization of recovery mechanisms 119 

of elite ultramarathon runners. It was also hypothesized that higher serum 25(OH)D levels 120 

in response to low dosage of vitamin D supplementation might improve this function via 121 

the stimulation of 25(OH)D production and release. To verify this, the relationships 122 

between eccentric exercise-induced muscle biomarker levels, as measured by troponin, 123 

myoglobin concentrations and creatine kinase and lactic dehydrogenase activity and 124 

25(OH)D levels in response to vitamin D supplementation in marathon runners were 125 

examined.   126 

 127 



 

 

Material and Methods 128 

 129 

Ethical approval 130 

The experiment was approved by the Ethics Committee of the Academy of Physical 131 

Education in Katowice (Ethics Committee decision KBN 3.2016) and conformed to the 132 

standards set by the Declaration of Helsinki. 133 

 134 

Subjects 135 

Twenty-four male ultramarathon runners who were endurance-trained for about seven years 136 

participated in the study. They were randomly assigned to either dietary protocol (i.e. 137 

placebo or the vitamin D supplementation, placebo-controlled study). All subjects 138 

participated in the study during the pre-season period. Study members were recruited from 139 

all the competitors of the ultra-marathons held during the Polish Running Championships. 140 

The inclusion criteria were participation in at least five marathons and written informed 141 

consent to take part in the study. The training status of the subjects included in the 142 

supplemented and placebo group expressed as maximal oxygen consumption (VO2max) 143 

was 54.5±9.4 and 50.1±7.4 ml/kg/min, respectively. Age, height, body mass, body mass 144 

index (BMI) and body composition of the participants (Mean±SD) are presented in Table 1. 145 

Mean energy supply with diet, mean daily fat, carbohydrate, protein and vitamin D intake 146 

were comparable in the supplemented group and placebo group (Table 2). Biochemical 147 

measurements of pre intervention 25(OH)D levels in runners indicate that serum levels of 148 

25(OH)D did not differ between the groups (Table 3). 149 

 150 

All subjects reported that they were not taking any medication that could affect the 151 

25(OH)D status. They were instructed to abstain from strenuous exercise for 24 hours 152 



 

 

before the ultrasound measurements. No caffeine, supplements, or alcohol were permitted 153 

during the 48 hours before the experiment. Three weeks prior to the study all participants 154 

were put on a mixed diet (Table 2). The composition of the diet was calculated with 155 

dedicated software for each subject (Dietus, B.U.I. InFit. Warsaw, Poland). The diet was 156 

continued with vitamin D or placebo administration. To ensure that participants adhered to 157 

the dietary regimen, they had to keep daily food intake logs which were inspected during 158 

the weekly, obligatory visits in the laboratory. We supplemented our subjects for 3 weeks 159 

and before each diet protocol, the biochemical variables and physiological variables were 160 

analyzed.  161 

Supplementation procedure and training protocol  162 

All clinical data, including biochemical parameters and exercise examination, were 163 

obtained after an overnight fast. Following these measurements, blood samples were taken 164 

through a peripheral catheter inserted into the antecubital vein; each participant completed 165 

an incremental ergometer exercise test. After initial testing, the vitamin D supplemented 166 

group received 50 μg (2 x 1000 IU/day) of vitamin D. The control group received a placebo 167 

in the form of gelatin capsules (1.3 g lactose monohydrate). Participants were instructed to 168 

take the capsules with meals twice daily for a total of 3 weeks.  169 

 170 

Exercise protocols  171 

All subjects participated in the following experiment consisting of three protocols: the 172 

incremental exercise test (to determine the intensity of continuous eccentric exercise, 173 

downhill running) continuous eccentric exercise before supplementation and continuous 174 

eccentric exercise post supplementation (preExE and postExE, respectively). The two 175 

laboratory protocols were separated by at least seven days to prevent any possible 176 



 

 

interference on the subjects’ exercise abilities or fatigue. At the baseline, before treatment 177 

protocol (supplementation or placebo), all subjects performed a standard incremental 178 

treadmill exercise test (LE 200 treadmill, Jaeger, Frankfurt, Germany) to measure their 179 

individual aerobic performance (maximal oxygen uptake, VO2max). The test started with a 180 

3-min warm-up at 6 km/h and 0° inclination; the intensity was then increased by 2 km/h 181 

every 3 min up to 12 km/h and then the intensity was increased and inclination by 2.5° up 182 

to maximal exercise intensity or volitional fatigue. Heart rate (HR) (PE-3000 Sport-Tester, 183 

Polar Inc., Kempele, Finland) and systolic and diastolic blood pressure (SBP/DBP) were 184 

measured (HEM-907 XL, Omron Corporation, Kyoto, Japan) before and immediately after 185 

the test. Pulmonary ventilation (VE), oxygen uptake (VO2), and carbon dioxide output 186 

(CO2) were measured continuously from the 6 minutes prior to exercise test and throughout 187 

each stage of the exercise test using the Oxycon Apparatus (CareFusion Germany 234 188 

GMBH, Hoechberg Jaeger, Germany). Physiological characteristics of the participants are 189 

presented in Table 1. 190 

 191 

In the second phase of the study, the subjects participated in a 30-minuterunning test with 192 

an eccentric type of work (ExE) and intensity of their individual 70% VO2max and 193 

treadmill 16° inclination based on a modified test protocol (AR Young Company, 194 

Indianapolis)32. According to Sorichter et al. 32, it has been shown that running down, i.e. 195 

eccentric effort, is an effective way to cause such a load on skeletal muscle that it can 196 

induce delayed onset muscle soreness (DOMS) symptoms. All subjects participated in the 197 

third laboratory protocol after 3 weeks of vitamin D supplementation or placebo according 198 

to the same ExE protocol.  199 

 200 

 201 



 

 

Measurements and blood collection  202 

At the beginning of the study (pre intervention) and at the end of each treatment period 203 

(post intervention supplementation or placebo protocol) all subjects reported to the 204 

laboratory and had venous blood drawn for the determination of levels of 25(OH)D and 205 

muscle biomarker concentrations. The blood samples were collected to determine the 206 

aforementioned markers immediately before (rest), immediately after the eccentric exercise 207 

(max) and during post-workout recovery (60 min and 24 hours after the end of the test).All 208 

investigated subjects underwent bioelectric impedance analysis (InBody Data Management 209 

System) under resting conditions to determine their body mass. The exercise tolerance was 210 

assessed by heart rate (HR) and blood lactate concentrations (LA) in response to eccentric 211 

exercise.  212 

 213 

Biochemical analyses 214 

For biochemical analysis, antecubital venous blood samples were always drawn at the same 215 

time of day, with the subject in a seated position. Venous blood samples were collected at 216 

four time points.  Blood was allowed to clot at room temperature and then centrifuged. The 217 

resulting serum was aliquoted and frozen at -80oCfor later analyses. The measurements of 218 

serum 25(OH)D levels were performed using25OH- Vitamin D ImmunoAssay(DIA source 219 

25OH Vitamin D total RIA CT Kit, Belgium).  Intra- and interassay coefficients 220 

of variation for 25(OH)D were 5.9 - 3.3 % and 7.4 - 4.9 %, respectively. The measurements 221 

of troponin (TN) were performed using Human TNNI1 (Troponin I Type 1, Slow Skeletal 222 

ELISA Kit EH-0625, Fine Biological Technology, Co Ltd. Wuhan, China). Intra- and 223 

interassay coefficients of variation for TN were <8.0 % and < 10.0 %, respectively. The 224 

serum myoglobin (MB) levels were measured using Human Myoglobin Enzyme 225 

Immunoassay (Mioglobina ELISA, KIT DRG® Myoglobin, EIA-3955). Intra- and 226 

interassay coefficients of variation for MB were 3.9 - 6.6% and 7.8 - 7.2%, respectively. 227 



 

 

The lowest detectable level of myoglobin by this assay is estimated to be 5 ng/ml. The 228 

proinflammatory cytokines interleukin-6 (IL-6) levels were measured by using Human IL-6 229 

High Sensitive ELISA kit, Diacone, France. Intra- and inter-assay coefficients of variation 230 

for of IL-6 were < 4.4% and < 6.4 %, respectively and tumor necrosis factor-alpha (TNF-α) 231 

were performed using (TNF-α-EASIA KAP1751 firm DIAsource, Belgium). Intra- and 232 

interassay coefficients of variation for TNF-α were < 5.1 % and < 8.6 %, %, respectively.  233 

Creatine Kinase (CK) and Lactate Dehydrogenase (LDH) activity were measured using a 234 

commercial kit (CK NAC and LDH P-L, RANDOX, UK). Intra- and interassay coefficients 235 

of variation for CK were 2.3 - 1.5 % and 3.9 - 3.3%, respectively and for LDH were 3.9 - 236 

1.8 % and 4.0 - 2.8%, respectively. Blood lactate concentrations (LA) were determined 237 

using BiosenC_line method (EKF Diagnostic GmbH, Germany). The degree of 238 

hemoconcentration (%) was calculated according to formula of subtracting the peak 239 

hematocrit with the minimum hematocrit recorded and multiplying by 100; all biochemical 240 

variables levels were corrected according to plasma volume.   241 

Statistical Analysis 242 

Shapiro-Wilk, Levene’s and Mauchly’s tests were used in order to verify the normality, 243 

homogeneity and sphericity of the sample’s data variances, respectively. The magnitudes of 244 

differences between results of pre-test and post-test were expressed as a standardized mean 245 

difference (Cohen effect sizes). The criteria to interpret the magnitude of the effect sizes 246 

were: <0.2 trivial, 0.2—0.6 small, 0.6—1.2 moderate, 1.2—2.0 large and >2.0 very large. 247 

Descriptive statistics were calculated and the results were presented as means and standard 248 

deviations (mean±SD). We analyzed differences between pre- and post-intervention 249 

(placebo/vitamin D) baseline and post exercise variables. The data were analyzed by two-250 

way ANOVA followed by the Student-Newman-Keuls test when appropriate. The 251 

statistical analysis includes a two-way ANOVA (placebo vs. vitamin D) and pre 252 

intervention vs. post intervention. Pearson correlation coefficients were analyzed to 253 



 

 

determine the inter-variable relationships. All analyses were performed using the Statistica 254 

v. 12 statistical software package (StatSoft, Tulsa, OK, USA). Statistical significance was 255 

set at p<0.05.  256 

 257 

 258 

 259 
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 276 



 

 

Results 277 

 278 

The effects of dietary supplementation with vitamin D and placebo administration on serum 279 

25(OH)D, muscle biomarkers and proinflammatory cytokines concentrations in runners 280 

were compared after three weeks of each treatment protocol. Analysis of variance revealed 281 

a significant effect of vitamin D supplementation on serum 25(OH)D concentration 282 

(F=17.1; p<0.001). Significant differences between pre-intervention and post-intervention 283 

baseline serum 25(OH)D levels (p<0.05) and post ExE levels were observed after the 284 

vitamin D dietary protocol (p<0.001). A significantly higher post intervention baseline 285 

25(OH)D level was observed after vitamin D diet compared to placebo (40.0±5.2 versus 286 

31.8±4.2 ng/ml, p<0.05, respectively). The vitamin D increased baseline 25(OH)D (Δ) by 287 

5.7±2.8 ng/ml and decreased placebo by - 2.2±3.6 ng/ml. ANOVA revealed a significant 288 

effect of vitamin D diet on TN levels (F=11.6; p<0.01). A significantly lower 24 h post 289 

exercise TN level was observed in vitamin D diet compared to pre-supplementation values 290 

(p<0.05). The baseline and max TN levels were significantly lower in vitamin D diet 291 

compared to placebo (p<0.05 and p<0.001, respectively). A significant effect of vitamin D 292 

supplementation was observed in response to MB levels (F=9.0; p<0.01) and TNFα (F=4.7; 293 

p<0.05). A repeated measure of two-way ANOVA revealed the significance of diet and 294 

exercise interaction effects on MB (F=4.5; p<0.01), CK (F=4.5; p<0.01) and 25(OH)D 295 

concentration (F=3.2; p<0.05).  296 

 297 

A significantly lower 24h post ExE CK activity was observed after vitamin D diet 298 

compared to the pre intervention and placebo group (p<0.05 and p<0.05, respectively). No 299 

significant effect of vitamin D diet was observed regarding LDH activity at baseline and at 300 

post-exercise levels. Significant lower max and 1h post ExE TNFα levels were observed 301 



 

 

after vitamin D diet compared to pre-intervention (p<0.01and p<0.01, respectively) and a 302 

non-significant trend to lower IL-6 levels (Table 3). 303 

 304 

A significant and negative correlation was observed between 25(OH)D concentration and 305 

TN level (24 h post ExE) in response to supplementation (r=-0.49; p<0.05) and 25(OH)D 306 

(Figure 1) and MB concentration (r=- 0.57; p=0.05) (Figure 2). Importantly, the negative 307 

correlation was observed between 25(OH)D concentration and CK activity during the 24h 308 

recovery period (r=-0.60; p<0.05) and TNFα levels (r=-0.42; p<0.05) (Figure 3) only in 309 

response to vitamin D supplementation. ANOVA did not reveal any significant effect of 310 

diet on HRmax (157.0±5.0 versus 154.0±3.0 b/min) and serum LA (1.9±0.3 versus 1.8±0.3) 311 

concentrations in response to ExE (p>0.05). 312 
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 324 



 

 

Discussion 325 

 326 

The present study was undertaken to investigate whether vitamin D supplementation might 327 

exert a beneficial effect on serum 25(OH)D concentrations, skeletal muscle biomarkers, and 328 

an exercise tolerance in marathon runners. Our results have demonstrated that a three-week 329 

low dosage of vitamin D supplementation caused elevation of baseline serum 25(OH)D 330 

compared to pre-supplementation levels. An increase in baseline and post-exercise serum 331 

25(OH)D were also observed in contrast to the placebo administration. Moreover, the 332 

increased 25(OH)D production seem to have significant effect on resting and post eccentric 333 

exercise – induced skeletal biomarker levels and proinflammatory cytokines. The major 334 

findings of our study are that greater 25(OH)D expression in response to vitamin D diet 335 

correlated with biomarkers of muscle damage and that this effect is more pronounced 336 

during 24h recovery. Three weeks of supplementation had a beneficial effect on skeletal 337 

muscle function. Lower serum levels of biomarkers of skeletal muscle damage and vitamin 338 

D status improvement might, in turn, have significantly decreased individual recovery time 339 

from eccentric exercise.  340 

 341 

Data concerning positive impacts of vitamin D consumption on optimizing athletic 342 

performance and recovery in intensely trained athletes are still sparse 5, 20, 33. Most studies 343 

support the benefits of dietary supplementation with vitamin D in healthy untrained adults 344 

and people diagnosed with 25-hydroxyvitamin D insufficiency (<30 ng/ml) 24, 34, 35. These 345 

results revealed a positive effect of vitamin D supplementation on global muscle strength, 346 

power and mass 14, 17, 36. Supplementation also seems more effective on people aged 65 347 

years compared to younger subjects. The effectiveness of the vitamin D supplementation 348 

was confirmed in athletes, however, the optimal intake and serum 25(OH)D levels have yet 349 

to be identified in the athletic population 2. In the study of Zhang et al., vitamin D 350 



 

 

supplementation positively affected lower limb muscle strength, but not muscle power in 351 

athletes 37. It has been suggested that different muscle groups may respond differently to 352 

vitamin D supplementation. Significant improvements in muscle function following 353 

vitamin D repletion were reported in a study on females38. Contrarily, a recent meta-354 

analysis involving 532 athletes found no improvement in measures of physical performance 355 

despite the inclusion of vitamin D deficient athletes at baseline and improvements in 356 

vitamin D levels over mean 12 weeks of follow-up 5.  357 

 358 

It has recently been reported that vitamin D supplementation might influence aerobic 359 

performance in athletes 36, 39. Significant positive correlation was observed between 360 

25(OH)D levels and aerobic performance (VO2max) and training status. Supplementation 361 

with supraphysiological dose of vitamin D (6000 IU/day) during 8-week of training in 362 

rowers with sufficient 25(OH)D levels significantly increased VO2max compared to 363 

placebo group 25. However, no significant effect of vitamin D on athletic performance or 364 

association between 25(OH)D levels and an individual’s VO2max were also noted 40, 41. 365 

 366 

Several mechanisms have been reported that may be responsible for the protective and 367 

ergogenic effect of 25-hydroxycholecalciferol in skeletal muscle13. The proposed 368 

mechanisms include a role of vitamin D receptors (VDR) that are expressed in skeletal 369 

muscle and when bound to 1,25(OH)2D3, exert genomic effects at target sites 24. Another 370 

mechanism includes a role of supplementation with vitamin D in stimulating oxygen uptake 371 

in skeletal muscle. It has been hypothesized that positive effects of 25(OH)D on oxygen 372 

uptake could be due to the fact that the cytochrome enzymes that activate vitamin D into 373 

1,25-dihydroxycholecalciferol have heme-containing proteins that could potentially affect 374 

the binding affinity of oxygen to hemoglobin 42. A significant effect of both exercise 375 

training and vitamin D supplementation on increased force and power output of skeletal 376 



 

 

muscle perhaps in response to an enhanced cross-bridge cycling and muscular contraction 377 

has also been suggested 22, 43, 44.  378 

 379 

In our study we concluded that 25(OH)D production after vitamin D diet has a significant 380 

effect on selected biomarkers of skeletal muscle damage and post exercise proinflammatory 381 

cytokine levels. Significant negative correlation was observed between 25(OH)D 382 

concentration and TN level and 25(OH)D and MB concentration in response to a vitamin D 383 

diet. Importantly, the negative correlation was observed between 25(OH)D concentration 384 

and CK activity during the 24h recovery period and TNFα levels. These support the 385 

findings that lower serum levels of biomarkers of skeletal muscle damage and vitamin D 386 

status improvement, might, in turn, have significantly decreased individual recovery time in 387 

marathon runners. Lower levels of serum vitamin D have been associated with increased 388 

muscle weakness, fatigue and injury incidents 45. Therefore, the ability to reduce fatigue 389 

and decrease the recovery time is important for athletes who train at high and moderate 390 

intensity with both concentric and eccentric muscle contraction more frequently. It was also 391 

observed that during recovery 1,25-hydroxyvitamin D increases the myogenic 392 

differentiation and proliferation, down-regulates myostatin and improved the skeletal 393 

muscle regeneration in animal studies 17. The findings that vitamin D supplementation 394 

enhances the recovery process following intense exercise 18 and ultramarathon runs46 were 395 

also supported by human studies. Serum 25(OH)D concentrations correlated positively with 396 

physical activity scores, and negatively with body mass index, lipid profile, fatigue scores 397 

(visual analog scale), and muscle fatigue biomarkers in healthy older adults 47, 48. Higher 398 

25(OH)D levels were accompanied by lower creatine kinase, troponin I, and lactic acid 399 

dehydrogenase activity, the generally used biomarkers for earlier detection of muscle 400 

injury, especially muscle soreness following training interventions 34. In the study of 401 

Nowak et al., self-reported fatigue has been linked to low levels of circulating 25-402 



 

 

hydroxyvitamin D (25OHD), a biomarker of vitamin D status, however, vitamin D 403 

treatment significantly improved fatigue in healthy persons with vitamin D deficiency 47.  404 

 405 

Fatigue is a complex and nonspecific phenomenon with significant response to physical and 406 

mental exertion or a feature of illnesses. There is no generally accepted set of criteria for 407 

fatigue, and the prevalence of fatigue varies widely depending on the assessment method 49-408 

52. A previous study demonstrated that vitamin D supplementation attenuated the 409 

inflammatory biomarkers immediately following intensive exercise with both eccentric and 410 

concentric muscle contractions 19. Our results revealed lower post exercise TNF-α levels 411 

and a tendency towards lower IL-6 concentrations in a specifically trained supplementation 412 

group compared to the baseline levels. Regardless of the fact that long-term exercise 413 

training might diminish 25(OH)D concentrations, we conclude that a dietary vitamin D 414 

supplementation also has a beneficial effect on the function of the immune system by 415 

suppressing exercise-induced proinflammatory cytokines in elite athletes. Still, a question 416 

arises whether the recommended dosage of 1500-2000 IU/day vitamin D could maintain 417 

adequate serum vitamin D concentrations in endurance trained athletes. The optimal levels 418 

needed for athletic performance are controversial; lower than 1000 UI/day may not be 419 

sufficient, especially for an older athletic population. It has been shown that dosages higher 420 

than 2000 UI/day or 3000 UI/day have been sufficient to increase skeletal muscle function 421 

and reduce the risk of stress fractures 23, 53, 54. The possible mechanisms responsible with a 422 

detailed characteristic of skeletal muscle functions in response to different dosages of 423 

vitamin D diet were not a major issue of the paper. These preliminary findings highlight the 424 

requirement for further studies on the effects of different dosages of vitamin D 425 

supplementation on skeletal muscle function and optimal performance in athletes.  426 

 427 



 

 

In summary, our results show that a 3-week vitamin D supplementation had a beneficial 428 

effect on skeletal muscle adaptation to running exercise with eccentric muscle contraction. 429 

The improvement of muscle function and recovery observed in our study population might 430 

have been induced by a decrease in biomarkers of muscle damage and injury associated 431 

with higher serum 25(OH)D concentrations a vitamin D-rich diet. 432 

 433 
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Table 1 Subject characteristics (mean, SD) 656 

 657 

Variables EXP 

n=12 

CON 

n=12 

Age (years) 33.7 ± 7.5 35.9 ± 5.3 

Body mass (kg) 74.7 ± 10.6 75.3 ± 8.6 

Body Height (cm) 176.8 ± 6.0 178.2 ± 6.8 

BMI (kg/m2) 23.8 ± 2.2 23.7 ± 2.1 

FAT (%) 13.7 ± 3.3 13.5 ± 4.4 

SMM (kg) 36.5 ± 5.1 36.9 ± 4.5 

TBW (L) 47.2 ± 6.4 47.5 ± 5.4 

VO2max (mL/kg/min) 54.5 ± 9.4 54.5 ± 9.4 

Peak power (Watt) 321.5 ± 77.9 351.4 ± 68.3 

HR max (b/min) 181.0 ± 11.0 186.0 ± 9.0 

BMI- body mass index, FAT- percent of body fat, SMM – skeletal muscle mass, TBW – total body water, 658 

VO2max – maximal oxygen uptake, HR max – heart rate maximum. 659 

 660 



  

Table 2 Mean energy supply with diet, mean daily fat, carbohydrate, protein and vitamin D 661 

intake in the supplemented group and placebo group (mean, SD). 662 

 663 

Variables EXP 

(n=12) 

CON 

(n=12) 

Energy [kcal/kg/day] 29.6 ± 3.0 28.0 ± 2.0 

Fat intake [%] 31.7 ± 9.6 30.8 ± 8.3 

Carbohydrate intake [%] 46.1 ± 6.6 46.7 ± 8.5 

Protein intake [%] 22.8 ± 5.4 22.4 ± 3.3 

Vitamin D [µg/day] 7.8 ± 7.1 8.4 ± 7.3 

 664 



  

Table 3 Serum 25(OH)D levels and biochemical markers of muscle damaged of the subjects 665 

 666 

Variables 

EXP CON P Effect size 

Pre-Suppl Post-Suppl Pre-Placebo Post-placebo 
Post Suppl vs 

post Placebo 
Cohen d 

25(OH)rest [ng/ml] 34.9 ± 4.7 40.3 ± 4.9 * 33.9 ± 4.8 31.8 ± 4.2 0.05 1.86 / Large 

25(OH)max [ng/ml] 36.5 ± 3.3 44.9 ± 4.9 *** 34.7 ± 8.1 39.2 ± 7.6 ns 0.89 / Moderate 

25(OH)D1 h [ng/ml] 40.0 ± 8.8 45.5 ± 4.7 33.3 ± 3.4 38.5 ± 9.7 0.05 0.92 / Moderate 

25(OH)D24h [ng/ml] 36.2 ± 6.2 41.2 ± 5.0 * 30.0 ± 6.4 35.7 ± 6.9 0.05 0.91 / Moderate 

TN rest [ng/ml] 2.9 ± 1.9 2.0 ± 1.6 7.2 ± 1.9 5.6 ± 4.2 0.05 1.13 / Moderate 

TN max [ng/ml] 5.1 ± 1.7 2.7 ± 1.6 8.9 ± 6.2 5.3 ± 4.1 0.001 0.84 / Moderate 

TN 1 h [ng/ml] 4.9 ± 2.0 2.9 ± 2.0 * 4.4 ± 3.2 4.7 ± 2.4 ns 0.81 / Moderate 

TN 24 h [ng/ml] 6.3 ± 3.7 3.7 ± 1.2 * 3.1 ± 1.2 3.1 ± 1.2 ns 0.5 / Small 

MB rest [ng/ml] 44.7 ± 23.1 40.6 ± 17.6 44.4 ± 11.8 37.1 ± 21.8 ns 0.18 / Trivial 

MB max [ng/ml] 73.9 ± 32.0 58.7 ± 27.6 93.4 ± 33.1 73.5 ± 43.7 ns 0.4 / Small 

MB 1h [ng/ml] 173.6 ± 104.5 92.6 ± 48.9 102.6 ± 59.5 83.9 ± 50.0 ns 0.18 / Trivial 

MB 24h [ng/ml] 93.2 ± 56.2 59.5 ± 37.8 *** 98.3 ± 26.7 93.0 ± 50.7 ns 0.75 / Moderate 

CK rest [U/l] 151.0 ± 59.5 166.4 ± 95.5 234.2 ± 88.9 248.4 ± 179.0 ns 0.57 / Small 

CKmax [U/l] 226.1 ± 141.0 212.7 ± 112.0 276.2 ± 118.2 286.6 ± 191.5 ns 0.47 / Small 

CK 1h [U/l] 248.0 ± 161.8 214.3 ± 109.0 276.8 ± 122.3 213.2 ± 113.4 ns 0.01 / Trivial 

CK 24 h [U/l] 361.3 ± 228.9 243.3 ± 91.5 * 434.3 ± 143.9 332.0 ± 255.6 0.05 0.46 / Small 

LDH rest [U/l] 337.1 ± 73.5 333.1 ± 80.5 339.4 ± 47.8 333.1 ± 60.1 ns 0 / Trivial 

LDH max [U/l] 400.5 ± 108.0 395.9 ± 68.6 401.4 ± 63.8 413.5 ± 79.6 ns 0.24 / Small 

LDH 1h [U/l] 361.4 ± 87.8 354.2 ± 69.4 355.0 ± 44.9 368.6 ± 72.2 ns 0.2 / Small 



 

 

LDH 24h [U/l] 344.9 ± 75.5 313.5 ± 66.6 339.1 ± 56.8 321.1 ± 31.1 ns 0.15 / Trivial 

TNFα rest [pg/ml] 9.7 ± 5.7 5.6 ± 2.6 13.7 ± 7.4 12.5 ± 4.4 ns 1.91 / Large 

TNFα max [pg/ml] 23.9 ± 15.2 10.5 ± 4.6 ** 22.9 ± 13.7 22.7 ± 17.4 ns 0.96 / Moderate 

TNFα 1h [pg/ml] 21.9 ± 16.8 8.4 ± 3.7 ** 18.7 ± 11.4 21.3 ± 12.2 ns 1.43 / Large 

TNFα 24h [pg/ml] 19.8 ± 14.2 11.6 ± 5.7 13.9 ± 6.7 13.7 ± 7.3 ns 0.32 / Small 

IL-6 rest [pg/ml] 1.4 ± 1.3 1.9± 1.8 1.5 ± 1.3 2.2 ± 2.0 ns 0.16 / Trivial 

IL-6 max [pg/ml] 2.0 ± 1.9 1.7 ± 1.0 2.7 ± 1.5 2.5 ± 2.3 ns 0.45 / Small 

IL-6 1h [pg/ml] 2.7 ± 2.3 2.3 ± 1.3 3.1 ± 2.0 3.0 ± 1.9 ns 0.43 / Small 

IL-6 24h [pg/ml] 1.8 ± 1.2 1.0 ± 0.9 2.0 ± 1.2 2.4 ± 1.6 ns 1.08 / Moderate 
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 668 

Figure 1 Correlation between 25(OH)D concentration and TNmax level in response to 669 

vitamin D supplementation. 670 



  

 671 

Figure 2 Correlation between 25(OH)D concentration and myoglobin (MB) level (24 h 672 

post ExE) in response to vitamin D supplementation.673 
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Figure 3 Correlation between 25(OH)D concentration and TN alpha level (24 h post ExE) 675 

in response to vitamin D supplementation. 676 
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